jueves, 5 de marzo de 2009

Inyección electrónica

Inyección

Es un sistema de alimentación de motores de combustión interna, alternativo al carburador, debido a la obligación de reducir las emisiones contaminantes y para que sea posible y duradero el uso del catalizador.
Este sistema es utilizado, obligatoriamente, en el ciclo del diésel desde siempre, puesto que el combustible tiene que ser inyectado dentro de la cámara en el momento de la combustión (aunque no siempre la cámara está sobre la cabeza del pistón).
En los motores de gasolina o GLP actualmente está desterrado el carburador en favor de la inyección, ya que permite una mejor dosificación del combustible y sobre todo desde la aplicación del gobierno electrónico por medio de un calculador que utiliza la información de diversos sensores colocados sobre el motor para manejar las distintas fases de funcionamiento, siempre obedeciendo las solicitudes del conductor en primer lugar y las normas de anticontaminación en un segundo lugar.

Sistemas de inyección

Los sistemas de inyección se dividen en:
En un principio se usaba inyección mecánica pero actualmente la inyección electrónica es común incluso en motores diésel
Inyección Multipunto y monopunto: Para ahorrar costes a veces se utilizaba un solo inyector para todos los cilindros, o sea, monopunto; en vez de uno por cada cilindro, o multipunto. Actualmente, y debido a las normas de anticontaminación existentes en la gran mayoría de los países, la inyección monopunto ha caído en desuso.
Directa e indirecta. En los motores de gasolina es indirecta si se pulveriza el combustible en el colector de admisión en vez de dentro de la cámara de combustión ó sea en el cilindro. En los motores diésel, en cambio, se denomina indirecta si se inyecta dentro de una precámara que se encuentra conectada a la cámara de combustión ó cámara principal que usualmente en las inyecciones directas se encuentran dentro de las cabezas de los pistones.
En los motores diésel el combustible debe estar más pulverizado porque se tiene que mezclar en un lapso menor y para que el encendido del mismo sea completo. Un motor de gasolina tiene toda la carrera de admisión y la de compresión para mezclarse, en cambio un diésel durante las carreras de admisión y compresión sólo hay aire en el cilindro. Cuando se llega al final de la compresión, el aire ha sido comprimido y por tanto tiene una elevada presión y temperatura la cual permiten que al inyectar el combustible, éste pueda inflamarse. Debido a las altas presiones reinantes en la cámara de combustión se han diseñado entre otros sistemas, el common-rail y el elemento bomba-inyector a fin de obtener mejores resultados en términos de rendimiento, economía de combustible y anticontaminación






Inyección electrónica

Este es un sistema que reemplaza el carburador en los motores a gasolina, su introducción se debió a un aumento en las exigencias de los organismos de control del medio ambiente para disminuir las emisiones de los motores.
Su importancia radica en su mejor capacidad respecto al carburador para dosificar el combustible y crear un mezcla aire / combustible, muy próxima a la estequiométrica (14,7:1 para la gasolina), lo que garantiza una muy buena combustión con reducción de los porcentajes de gases tóxicos a la atmósfera. La relación estequiométrica es la proporción exacta de aire y combustible que garantiza una combustión completa de todo el combustible.
La función es la de tomar aire del medio ambiente, medirlo e introducirlo al motor, luego de acuerdo a esta medición y conforme al régimen de funcionamiento del motor, inyectar la cantidad de combustible necesaria para que la combustión sea lo más completa posible.
Consta de fundamentalmente de sensores, una unidad electrónica de control y actuadores o accionadores.
El funcionamiento se basa en la medición de ciertos parámetros de funcionamiento del motor, como son: el caudal de aire, la temperatura del aire y del refrigerante, el estado de carga (sensor PAM), cantidad de oxígeno en los gases de escape (sensor EGO o Lambda), revoluciones del motor, etc., estás señales son procesadas por la unidad de control, dando como resultado señales que se transmiten a los accionadores (inyectores) que controlan la inyección de combustible y a otras partes del motor para obtener una combustión mejorada.
las principales ventajas de los sistemas de inyección electrónica son: reducción de gases contaminantes, mas potencia con un menor consumo y un mejoramiento de la marcha del motor en cualquier régimen de éste.


Clasificación de los sistemas de inyección electrónica
Las clasificaciones más escuchadas es la basada en la cantidad de inyectores con las conocidas denominaciones monopunto y multipunto.
En los sistemas de inyección monopunto se presenta únicamente un solo inyector el cual proporciona combustible en el colector de admisión. Los sistemas multipunto en cambio tienen un inyector por cada cilindro.

Sistema de inyeccion electronica Sisteme de inyeccion electronica

(Monopunto) (Multipunto)












Otro tipos de clasificaciones son según el lugar donde se inyecten (inyección directa o indirecta), según el número de inyecciones (continua, intermitente) y según su tipo de funcionamiento (inyección mecánica, electromecánica y electrónica).
La inyección indirecta es la generalmente usada, hace referencia al sistema mediante el cual el combustible es introducido en el colector de admisión sobre la válvula de admisión, mientras que la inyección directa basa su funcionamiento en la inyección de combustible directamente en el cilindro. Esta última es más nueva y se está extendiendo en cada vez mas modelos.
Al realizar la clasificación teniendo en cuenta el número de inyecciones nos encontramos con la inyección continua, en donde los inyectores proveen el combustible continuamente a los colectores de admisión.En la inyección intermitente se inyecta el combustible a intervalos según lo determine la central de mando.
Este último tipo se subdivide a su vez en tres categorías: secuencial, semisecuencial y simultánea.
En la secuencial el combustible se inyecta con la válvula de admisión abierta presentando así los inyectores un funcionamiento sincronizado con éstas (actuando todos los inyectores en diferentes tiempos).En la semisecuencial el combustible se inyecta de a pares, es decir, los inyectores actúan de a dos.La simultánea el combustible se inyecta al unísono, actuando todos los inyectores a la misma vez.
Los tipos basados en el funcionamiento que los clasifican en inyección mecánica (K-jetronic), electromecánica (KE-jetronic) y electrónica (L-jetronic, LE-jetronic, Motronic y Dijijet entre otros).

Sistemas de inyección electrónica
  • Common Rail
El sistema Common rail, denominado también inyección por tubería común, es un sistema de inyección directa multipunto para motores diesel.Su objetivo es proporcionar el combustible a los inyectores a una presión aproximada de 1500 atmósferas gracias a la acción de una bomba mecánica por medio de una rampa denominada Common Rail, de la cual el sistema hereda su nombre, lo que posibilita un aumento en el rendimiento y un menor consumo de combustible.Los inyectores en este sistema accionan como electro válvulas y es controlada por la unidad central de comando, la que gracias a la corriente que envía permite la apertura de la válvulas accionando un electroimán en éstas.La unidad central de comando controla además otras funciones de la inyección como el orden de inyección y volumen de combustible a través de la corriente enviada a cada inyector, basándose para su decisión en la información recibida de diferentes sensores.

  • k-jetronic


  • Sistemas L-Jetronic y Motronic






Componentes del sistema L-jetronic:

1.- Medidor de caudal de aire;

2.- ECU;

3.- Bomba eléctrica de gasolina

4.- Filtro;

5.- Válvula de aire adicional;

6.- Sonda lambda;

7.- Sensor de temperatura;

8.- Inyectores electromagnéటిక్

9.- Sensor de posición de la mariposa;

10.- Regulador de presión de combustible.



El sistema de admisión

consta de filtro de aire, colector de admisión, mariposa y tubos de admisión conectados a cada cilindro. El sistema de admisión tiene por función hacer llegar a cada cilindro del motor el caudal de aire necesario a cada carrera del pistón.


El medidor del caudal de aire

(8) registra la cantidad de aire que el motor aspira a través del sistema de admisión. Como todo el aire que aspira el motor ha de pasar por el medidor del caudal de aire, una compensación automática corrige las modificaciones del motor debidas al desgaste, depósitos de carbono en las cámaras de combustible y variaciones en el ajuste de las válvulas. El medidor del caudal de aire envía una señal eléctrica a la unidad de control; esta señal, combinada con una señal del régimen, determina el caudal de combustible necesario. La unidad de control puede variar esta cantidad en función de los estados de servicio del motor.


Sensores

Un cierto número de sensores registran las magnitudes variables del motor supervisan su estado de funcionamiento. El interruptor de mariposa (12) registra la posición de la mariposa y envía una señal a la unidad de control electrónica para indicar los estados de ralentí, carga parcial o plena carga. Hay otros sensores encargados de indicar el régimen del motor (11), la posición angular del cigüeñal (sistemas Motronic), la temperatura del motor (10) y la temperatura del aire aspirado. Algunos vehículos tienen otro sensor, llamado "sonda Lambda" (16), que mide el contenido de oxígeno en los gases de escape. La sonda transmite una señal suplementaria a la UCE, la cual a su vez disminuye la emisión de los gases de escape controlando la proporción aire/combustible.


Unidad de control electrónica (UCE)

Las señales que transmiten los sensores las recibe la unidad de control electrónica (7) y son procesadas por sus circuitos electrónicos. La señal de salida de la UCE consiste en impulsos de mando a los inyectores. Estos impulsos determinan la cantidad de combustible que hay que inyectar al influir en la duración de la apertura de los inyectores a cada vuelta del cigüeñal. Los impulsos de mando son enviados simultáneamente de forma que todas los inyectores se abren y se cierran al mismo tiempo. El ciclo de inyección de los sistemas L-Jetronic y Motronic se ha concebido de forma que a cada vuelta del cigüeñal los inyectores se abren y se cierran una sola vez.
El sistema de alimentación

suministra bajo presión el caudal de combustible necesario para el motor en cada estado de funcionamiento. El sistema consta de depósito de combustible (1 ), electro-bomba (2), filtro (3), tubería de distribución y regulador de la presión del combustible (4), inyectores (5) y en algunos modelos inyector de arranque en frío (6) en los sistemas de inyección mas antiguos. Una bomba celular de rodillos accionada eléctricamente conduce bajo presión el combustible desde el depósito, a través de un filtro, hasta la tubería de distribución. La bomba impulsa más combustible del que el motor puede necesitar como máximo y el regulador de presión del combustible lo mantiene a una presión constante. El combustible sobrante en el sistema es desviado a través del regulador de presión y devuelto al depósito. De la rampa de inyección parten las tuberías de combustible hacia los inyectores y por lo tanto la presión del combustible en cada inyector es la misma que en la rampa de inyección. Los inyectores van alojadas en cada tubo de admisión, delante de las válvulas de admisión del motor. Se inyecta la gasolina en la corriente de aire delante de las válvulas de admisión y al abrirse el inyector el combustible es aspirado con el aire dentro del cilindro y se forma una mezcla inflamable debido a la turbulencia que se origina en la cámara de combustión durante el tiempo de admisión. Cada inyector está conectado eléctricamente en paralelo con la unidad de control que determina el tiempo de apertura de los inyectores y por consiguiente la cantidad de combustible inyectada en los cilindros.


inyector electromagnético

1.- Aguja.

2.- Núcleo magnético.

3.- Bobinado eléctrico.

4 Conexión eléctrica.

5.- Filtro.


regulador de presión

1.- Entrada de combustible.

2.- Salida de combustible hacia deposito.

3.- Carcasa metálica.

4.- Membrana.

6.- Tubo que conecta con el colector de admisión.

7.- Válvula.

Sistema Bosch LH-Jetronic.

Es un sistema de inyección electrónico de gasolina cuya diferencia principal con el sistema L-Jetronic es la utilización de un medidor de caudal de aire distinto (medidor de la masa de aire por hilo caliente).




Componentes de un sistema LH-jetronic: Los mismos que el sistema L-jetronic con la diferencia del uso de unmedidor de caudal de aire por hilo caliente (1), y un actuador rotativo de ralentí (2)



1.- Conexiones eléctricas.

2.- Circuito electrónico de control.

3.- Conducto.

4.- Anillo.5.

- Hilo caliente.

6.- Resistencia de compensación térmica.

7.- Rejilla.

8.- Cuerpo principal.Despiece de un caudalimetro de hilo caliente.

Medidor del caudal de aire (medidor de la masa de aire por hilo caliente)

El medidor de la masa de aire por hilo caliente es un perfeccionamiento del medidor del caudal de aire clásico. En la caja tubular hay un tubo de medición del diámetro más pequeño, atravesado por una sonda térmica y un hilo. Estos dos componentes forman parte de un circuito de puente que mantiene el hilo a una temperatura constante superior a la temperatura del aire medido por el medidor. La corriente necesaria es directamente proporcional a la masa de aire, independientemente de su presión, su temperatura o su humedad. Se mide la corriente necesaria para mantener el hilo a esta temperatura superior y esta señal se envía a la unidad de control electrónica (UCE), la cual, combinada con una señal del régimen del motor, determina la cantidad de combustible necesario. Entonces la unidad de control puede modificar esta cantidad en función del estado de funcionamiento que indican los sensores adicionales. Dado que todo el aire que aspira el motor ha de pasar por el medidor de la masa de aire, una compensación automática corrige no sólo las variaciones de los estados de marcha, sino también los cambios debidos al desgaste, a la disminución de la eficacia del convertidor catalítico, a los depósitos de carbono o a modificaciones en el ajuste de las válvulas.